3d N=2 U(N) super-CS-th
at level k + 1 massive chiral
multiplet
$$\Phi$$
 in adjoint representation
 \rightarrow U(1)/s rotates x³ and x⁴
 \rightarrow background exp. volve gives real mass /s
to Φ :
SSmass = $\int d^3x d^4\theta \Phi e^{A\theta^2} \Phi^4$

To summarize, we have arrived
at the following correspondence:

$$\frac{3d \quad V= 2 \text{-th } T[L(k,I), i\beta]}{SCS-th at level k} \longrightarrow \frac{3d \quad V=2 \text{-th } T[Z\times S; \beta]}{Sigma-model with}$$
with adjoint Φ of a real mass for
with adjoint Φ of a real mass for
 $u(I)_S$ flavor sym.
 $evaluate$
partition function
 $a \quad \Sigma \times S'$
 $= \dim_S \mathcal{H}(\Sigma; G_C; k) = Z_T[Z\times S; \beta] [L(k,I); SL(N, \ell)]$
 $= \dim_S \mathcal{H}(\Sigma; G_C; k) \cong Equivariant$
 $where \quad t = e^{-\beta}$
The degree -O piece is given by
 $\mathcal{H}_{o} = \mathcal{H}(\Sigma; G, k) = \# (conformal blocks on \Sigma)$
 $= (\frac{K+2}{2})^{Q+1} \sum_{j=1}^{K+1} (Sin \frac{\pi_j}{K+2})^{2-2q} \qquad Verlinde$

Equivariant Entegration over
Hitchin moduli space
1) Quantization of Hitchin moduli
space:
Mplet (Z; G) = {A | F_A = of /G
-> equipped with symplectic form

$$w = \frac{1}{4\pi^2} \int Tr SA ASA$$

where S is de Rham diff. an Mpat
 \Rightarrow w generator of H²(Mplat, Z)
 \Rightarrow classical phase space of
CS-th: (Mplat(Z;G), kw)
 \Rightarrow geometric quantization identifies
 $line bundle Z^{\otimes k}$:
 $\mathcal{H}_{CS}(Z; G, k) = H^{\circ}(Mplat(Z; G), Z^{\otimes k})$
kodaira vanishing
 $= \chi(Mplat, Z^{\otimes k}) = Index(Zz^{\otimes k})$

$$= \int_{M_{Flat}} Td \left(\mathcal{M}_{Flat}\right) \wedge e^{Rw}$$
"Todd class" of $\mathcal{M}_{Flat}(\Sigma;G)$
Now let us consider Chern-Simous
theory with complex gauge group $G_{\mathbb{C}}$
 $addeside classical phase space becomes:
 $\left(\mathcal{M}_{Flat}\left(\Sigma;G_{\mathbb{C}}\right) = \mathcal{M}_{H}\left(\Sigma;G\right), kw, 10w\right)$
where
 $\mathcal{M}_{H}\left(\Sigma;G_{\mathbb{C}}\right) = \int_{M_{H}} (A\Phi) \int_{A} \int_{A} \Phi = d_{A}^{\dagger} \Phi = 0 \int_{G} \int_{G}$$

-> is complexification of Med(E;G)
birationally equivalant to T*Met
-> quantization gives:
dim Hcs(Z;Gc, k) = ∫ Td(MH)ne^{kux+0WK}
MH
-> integral divergent
But: MH admits U(1) action
with compact fixed point loci
-> denote by U(1)s
The corresponding vector field on MH,
denoted by V, is generated by the
Hamiltonian:

$$M = \frac{1}{2H} \int Tr(\phi \land X \phi)$$

Sm = 277 LV WE
-> define equivariant integral:
 $\int ch(X^0) \land Td(MH) \longrightarrow Sch(X^0, \beta) \land Td(MH)^3$

where the equivariant Chern character
is given by

$$ch(X^{\otimes K}, S) = exp(K\overline{w}_{I}) = exp(Kw_{I}-KSm)$$

 \rightarrow exponentially suppresses the
contributions away from Mpert(Z,G)
 $M_{H}(KPSO)$
 \rightarrow Atiyah-Bott localization gives
Index_S, $(\overline{y}_{\otimes K}, S) = \sum_{Fd} e^{-SK \cdot m(Fd)} \int_{Td(Fd) \cdot e^{Kr}} Td(Fd) \cdot e^{Kr}$
 (K)
 $critical loci of n$
Can be either computed directly
a by using the duality above!
We will proceed along the
second path

B-deformed complex CS-th The 3d N=2 theory T[L(R,1);B] can be twisted on ZxS' -> resulting theory is "B-deformed Ge complex Chern-Simons theory at level R Has the following properties: i) For /3 -> + os it reduces to CS-th. with compact gaug group G at level k 2) For /3 -> 0 it becomes Chern-Simons theory with non-compact gauge group Ge 3) For general B, it reproduces the equivariant integral (*) over the Hitchin moduli space MH (if put on IxS') -> We are interested in sector 3)

Equivariant G/G gauged WZW model
The partition function of T [L(kil); ß]
on S'x Z is equivalent to the
one of equivariant gauged WZW
model on Z.
— in the limit /3-50 obtain ordinary
gauged WZW model on Z
Fields are:
• (A, n, g) where A is gauge field,
g e G = Map(Z,G), and n
is auxiliary Grassmann I-form
in adjoint trep.
• at level R, the action of the
G/G model is

$$k S_{G/G}(A, n; g) = k S_G(A; g) - ik T(A; g) + i f Trans
Where $S_G(q, A) = -\frac{1}{8\pi} \int Tr(q^2) d_A q x q^2 d_A q)$$$

and

$$T(g, A) = \frac{1}{12\pi} \int Tr \left[(g^{-1}dg)^3 \right]$$

$$-\frac{1}{4\pi} \int Tr \left(Adgg^{-1} + AA^3 \right)$$

$$\sum_{Z}$$
where B is handlebody with $\Im B = Z$